

Epidemic Control with Reinforcement Learning

Qiyao Wei Romina Abachi Ehsan Mehralian

CONTENTS

SIR Model

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.lewuathe.com%2Fassets%2Fimg%2Fposts%2F2020-03-1

Parameter Reference • •

Continuous-time:

$$\frac{dS}{dt} = \frac{-\beta}{(1+v)N}SI - uS$$
$$\frac{dI}{dt} = \frac{\beta}{(1+v)N}SI - \alpha I - rI$$
$$\frac{dN}{dt} = -(1-f)\alpha I$$
$$R = N - S - I$$

- 1. Beta: transmission coefficient (susceptible becoming infectious)
- 2. Alpha: rate of infectives leaving the infected class
- 3. f: proportion of infectives recovering, with the remainder dying of infection (think of this as a "subset" of alpha)
- 4. u, v, r: control variables/actions
- 5. Moment of caution: I will use the term "return" to represent the returns in training, and I will use the term

"reward" and "penalty" interchangeably to represent the returns in evaluation.

Source: https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

u (vaccination)

• • •

r (quarantine)

• • • 02 Single node

Beta PPO

Beta A2C

Change in infected population throughout training

Infected Population across all methods

- Sampled over 50 timesteps
- Most "good" control curves overlap, since they control the infected population right away

• Our agent can outperform optimal control policy (GEKKO)

We did not include Gaussian because it has a high variance.
We did not include v = 1 and u = 1 heuristics because their penalties are too high

• • • O3 Network

• • • • SIR Network Diagram • • •

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F317711741%2Ffigur Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fmedia.springernature.com%2Fm685%2Fspringer-static%2Fima

• • • SIR Network Equations • • •

$$S'_{j} = -uS_{j} - (1 - \omega)S_{j} \sum_{k} \beta m_{j,k} \frac{I_{k}}{N_{k}}$$
$$I'_{j} = -\alpha I_{j} - rI_{j} + (1 - \omega)S_{j} \sum_{k} \beta m_{j,k} \frac{I_{k}}{N_{k}}$$
$$N'_{j} = -(1 - f)\alpha I_{j}$$
$$R_{j} = N_{j} - I_{j} - S_{j}$$

	• •			Sanity Check (1)						
1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.5	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.1	0.7	0.2	0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.2	0.0	0.8	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.8	0.2	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.1	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.9	

S_0	5000	4500	4500	4000	4000	3000	2000	1000	500	500	
I_0	0	500	500	1000	1000	2000	3000	4000	4500	4500	

- 1. Node 0 does not experience the epidemic, which is expected
- 2. Node 8 and 9 are the most affected, since they start off with a high infected population
- 3. Node 8 and 9 have identical SIR curves, which is expected

Sampled rewards accumulated across nodes

• • • 04 Future Directions

- 1. Design heuristic tests on the network formulation, and make sure they work with our expectations.
- 2. Test the network on real data