4

Epidemic Control with Reinforcement Learning

Qiyao Wei
Romina Abachi
Ehsan Mehralian




CONTENTS

O]

SIR Model




SIR Model

.ooO] ® o -

OIS TS




- o 0 @O SIR Model Diagram ® o o -

S / R

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.lewuathe.com%2Fassets%2Fimg%2Fposts%2F2020-03-1


https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
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1. Beta: transmission coefficient (susceptible becoming infectious)

2. Alpha: rate of infectives leaving the infected class

3. f: proportion of infectives recovering, with the remainder dying of infection (think of this as a “subset” of alpha)
4. u, v, r: control variables/actions

5. Moment of caution: I will use the term “return” to represent the returns in training, and I will use the term

“reward” and “penalty” interchangeably to represent the returns in evaluation.

Source: https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model



https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
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SIR Evolution
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Discounted Return
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Change in infected population throughout training
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Infected Population across all methods
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Sampled rewards across all methods
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Node 0 does not experience the epidemic, which is expected
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2. Node 8 and 9 are the most affected, since they start off with a high infected population

3. Node 8 and 9 have identical SIR curves, which is expected
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Sampled rewards accumulated across nodes
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Future Directions
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* 1. Design heuristic tests on the network formulation, and make sure
they work with our expectations.

e 2. Test the network on real data



