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1 Vanilla Gradient Descent and its Convergence Rate

([Zhang(2019)])
Throughout this report we consider a convex function f : Rn 7→ R, and assume that it is differentiable

and L-Lipschitz, i.e. ‖∇f(x)‖ ≤ L. It is quite natural to use gradient descent under such formulation.

If we let x∗ = arg min f(x), and start with ‖x0 − x∗‖ ≤ d, then we would choose gradient step size
ηt = d

L
√

(t)
, and do xt+1 = xt − ηt ∗ ∇f(xt). The convergence rate for vanilla gradient descent is as follows.

Theorem 1.1 (Convergence of gradient descent) Let x0 be such that ‖x0 − x∗‖ ≤ d. The gradient descent
algorithm for T iterations starting at (x0, f(x0)) satisfies (proof omitted, but interested readers can always
find this simple proof in the original lecture notes ([Zhang(2019)]))

f

(
1

T

T−1∑
i=0

xi

)
− f (x∗) ≤ RL√

T

2 Bregman Divergence

([Zhang(2019)])
The most natural way I found to go from the familiar squared Euclidian Distance (SED and it also

has many other names like L2 norm) towards Bregman Divergences is to simply note that the Bregman
Divergence is a natural extension from SED, capturing all the Lp norms and much more. We refer to this
source (http://mark.reid.name/blog/meet-the-bregman-divergences.html) for an interactive demo.

The Bregman Divergence is defined as

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b))

As an example, for a ∈ Rd, the distance defined as Φ(a) = 1
2‖a‖

2 between a and b is the same as SED

DΦ(a, b) =
1

2
‖a‖2 −

(
1

2
‖b‖2 + b · (a− b)

)
=

1

2
‖a− b‖2

Since the introduction part of the ODE paper touches on mirror descent in a more detailed way, I am
omitting the last part of the lecture notes in ([Zhang(2019)]). Moving on to the ODE paper will give us more
than enough understanding of mirror descent.
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3 Important Key Assumptions

The analysis in ([Zhang(2019)]) tells us that vanilla gradient descent, as well as mirror descent under the
same assumptions of ”f being L-Lipschitz”, converges in O( 1

t1/2
). This is only under the simplest assumption.

The vast majority of literature in this field, including the paper we will be seeing next, requires a more strict
assumption, namely that ”f being L-smooth”. We will explicitly define this assumption later in this report,
but it is vital to draw comparison here emphasizing the difference between ”f being L-Lipschitz”, which
restricts the gradient of f, and ”f being L-smooth”, which restricts the gradient of the gradient of f. ”f being
L-smooth” is also often referred to as ”∇ f being Lipschitz”, hence the confusion.

4 Vanilla Gradient Descent and Mirror Descent Under Lyapunov
Arguments

([Krichene et al.(2015)Krichene, Bayen, and Bartlett])
The fact that many machine learning and optimization problems can be characterized using ODE equa-

tions is well-known. As a simple example, vanilla gradient descent x(k+1) = x(k) − s∇f
(
x(k)

)
with a step

size s can be rephrased as Ẋ(t) = −∇f(X(t)) with discretization step s.

In order to prove the convergence rate of vanilla gradient descent, we consider Lyapunov arguments. For
example, for the simple ODE Ẋ(t) = −∇f(X(t)), we define a Lyapunov function V (X(t)) = 1

2 ‖X(t)− x?‖2.
Then

d

dt
V (X(t)) =

〈
Ẋ(t), X(t)− x?

〉
= 〈−∇f(X(t)), X(t)− x?〉 ≤ − (f(X(t))− f?)

Where the final inequality is due to the convexity of f. The convergence we want to prove, expressed as

f

(
1

t

∫ t

0

X(τ)dτ

)
− f? ≤ 1

t

∫ t

0

f(X(τ))dτ − f?

≤ V (x0)− V (X(t))

t

≤ V (x0)

t

= O(
1

t
)

Where the second inequality is because integrating
d

dt
V (X(t)) ≤ − (f(X(t))− f?)V (X(t))− V (x0) ≤ tf? −

∫ t

0

f(X(τ))dτ

We now apply the logic above to the mirror descent formulation. For simplicity of notation, we use E to
denote the primal space Rn, and E? to denote the dual space. In this case, we replace the original Lyapunov
V (X(t)) = 1

2 ‖X(t)− x?‖2 by a function on the dual space V (Z(t)) = Dψ∗ (Z(t), z?), where Z(t) ∈ E?
corresponds to X(t) ∈ E, and ψ∗ is a convex function defined on E? such that ∇ψ∗ : E? 7→ E. Just to
reiterate, the Bregman Divergence is defined as Dψ∗ (Z(t), z?) = ψ∗(Z(t))− (ψ∗(z?) +∇ψ∗(z?) · (Z(t)− z?)).

d

dt
V (Z(t)) =

d

dt
Dψ∗ (Z(t), z?) =

d

dt
(ψ∗(Z(t))− ψ∗ (z?)− 〈∇ψ∗ (z∗) , Z(t)− z?〉)

=
〈
∇ψ∗(Z(t))−∇ψ∗ (z?) , Ż(t)

〉
=
〈
X(t)− x?, Ż(t)

〉
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where the derivatives wrt t for z? is of course zero. Therefore, if the dual variable Z obeys the dynamics
Ż = −∇f(X), then

d

dt
V (Z(t)) = −〈∇f(X(t)), X(t)− x?〉 ≤ − (f(X(t))− f?)

and by the same argument as before, f
(

1
t

∫ t
0
X(τ)dτ

)
−f? converges to 0 at a O(1/t) rate. . We summarize

the mirror descent system with
X = ∇ψ∗(Z)

Ż = −∇f(X)
X(0) = x0, Z(0) = z0 with ∇ψ∗ (z0) = x0

Just as a quick example, if we take ψ∗(Z) = 1
2 ‖z‖

2
, then ∇ψ∗(Z) is the identity, X and Z coincide, and

we retrieve vanilla gradient descent.

5 Now the ODE Paper

Aside from the background in the previous section, the ODE paper also mentions Nesterov’s accelerated
method, which provably converges in O( 1

t2 ). In terms of Lyapunov arguments, the hard work has already
been done for us in expressing it as a second-order ODE ([Su et al.(2014)Su, Boyd, and Candes]), so by

choosing the proper Lyapunov function E(t) = t2

r (f(X) − f?) + r
2

∥∥∥X + t
r Ẋ − x

?
∥∥∥2

, one can prove conver-

gence in O( 1
t2 ). However, this Lyapunov function is only defined for the Euclidean norm.

We can now appreciate the gap this paper is trying to bridge. ([Su et al.(2014)Su, Boyd, and Candes])
only talks about the ODE formulation of Nesterov’s accelerated method in the Euclidean space. Therefore,
this paper takes that one step further, by extending the ODE formulation of Nesterov’s accelerated method
to the general space of Bregman Divergences with mirror descent. Notably, the only thing that changed be-
tween the two papers is the continuous time formulation, since the discretization technique in them is identical.

We define the assumptions here. This paper assumes ψ? is L-smooth. For function f to be L-smooth wrt a
reference norm ‖·‖∗, we must haveDf (z, y) ≤ L

2 ‖z−y‖
2
∗. Referred to in papers like ([Allen-Zhu and Orecchia(2014)]),

L-smooth is also defined for a function f as ‖∇f(x) − ∇f(y)‖∗ ≤ L‖x − y‖. It is worth noting that this is
equivalent to our inverse mapping function ∇ψ? being L-Lipschitz.

The desired lyapunov function is V (X(t), Z(t), t) = t2

r (f(X(t))− f?) + rDψ∗ (Z(t), z?). With the same
computation as before, we would have the proposed ODE system Ẋ = r

t (∇ψ∗(Z)−X)

Ż = − t
r∇f(X)

X(0) = x0, Z(0) = z0, with ∇ψ∗ (z0) = x0

In terms of Euclidean norm, taking ψ∗(z) = 1
2‖z‖

2, we have ∇ψ∗(z) = z, thus Z = X + t
r Ẋ, and the

ODE system is equivalent to d
dt

(
X + t

r Ẋ
)

= − t
r∇f(X), which is equivalent to the ODE (2) studied in

([Su et al.(2014)Su, Boyd, and Candes]), which we recover as a special case.

It is now straightforward to establish the convergence rate of the solution.
Theorem 2. Suppose that f has Lipschitz gradient, and that ψ∗ is a smooth distance generating func-
tion. Let (X(t), Z(t)) be the solution to the accelerated mirror descent ODE (5) with r ≥ 2 Then for all

t > 0, f(X(t))− f? ≤ r2Dψ∗ (z0,z
?)

t2
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Proof. By construction of the ODE, V (X(t), Z(t), t) = t2

r (f(X(t))− f?) + rDψ∗ (Z(t), z?) is a Lyapunov

function. It follows that for all t > 0, t
2

r (f(X(t))− f?) ≤ V (X(t), Z(t), t) ≤ V (x0, z0, 0) = rDψ∗ (z0, z
?)

We then discretize the mirror descent system for more general applications. We proceed with the follow-
ing ”mixed forward-backward Euler scheme”, by taking a step size of

√
s, letting tk = k

√
s, and defining x(k) =

X (tk) = X(k
√
s) (expanding on the discussion of discretization, one can refer to [Xu et al.(2018)Xu, Wang, and Gu]

for 3 different discretization techniques, applicable to deterministic and stochastic mirror descent):

Algorithm 1 Accelerated mirror descent with distance generating function ψ∗, regularizer R, step size s,
and parameter r ≥ 3
1: Initialize x̃(0) = x0, z̃

(0) = x0, ( or z(0) ∈ (∇ψ)−1 (x0)
)

2: for k ∈ N do
3 : x(k+1) = λkz̃

(k) + (1− λk) x̃(k), with λk = r
r+k

4 : z̃(k+1) = arg minz̃∈X
ks
r

〈
∇f

(
x(k+1)

)
, z̃
〉

+Dψ

(
z̃, z̃(k)

)
(If ψ is non-differentiable, z(k+1) = z(k) − kr

s ∇f
(
x(k+1)

)
and z̃(k+1) = ∇ψ∗

(
z(k+1)

)
.
)

5: x̃(k+1) = arg minx̃∈X γs
〈
∇f

(
x(k+1)

)
, x̃
〉

+R
(
x̃, x(k+1)

)
Theorem 3. The discrete-time accelerated mirror descent Algorithm 1 with parameter r ≥ 3 and step

sizes γ ≥ LRLψ∗ , s ≤ `R
2Lfγ

, guarantees that for all k > 0

f
(
x̃(k))

)
− f? ≤ r

sk2
Ẽ(1) ≤ r2Dψ∗ (z0, z

?)

sk2
+
f (x0)− f?

k2

The paper also provides an example using KL-divergence. However, it breezes through the procedure
with hasty references.

As a conclusion, we have given a gentle introduction to gradient descent and mirror descent in its Lyapunov
formulation. Further investigation into the nature of Lyapunov arguments and Nesterov’s accelerated method
is required in order to better understand the details of this paper.
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