SDP relaxation of SNL

Qiyao Wei

April 2021

In our notation, dim represents the number of dimensions we are considering. In other words, $\operatorname{dim}=2$ means we are in Euclidean space, and every anchor/sensor is a 2-dimensional vector.
pts $=50$ means we are solving for 50 sensor locations, and anc $=3$ means we are given 3 anchor locations. I have described the rest in code comments. I also formulate the SDP relaxation below. This is adapted from Equation 7 from https://web.stanford.edu/ yyye/adhocn4.pdf, and I have omitted the sensor-sensor distances for now (i.e. the equality constraints as well as the inequality constraints), which are trivial to add.

$$
Z:=\left(\begin{array}{cc}
I & X \\
X^{T} & Y
\end{array}\right) \succeq 0
$$

Note that $I \in R^{\text {dimxdim }}, X \in R^{\text {dimxpts }}$, and $Y \in R^{\text {ptsxpts }}$. Then, the problem can be written as a standard SDP problem:

$$
\sum_{k, j \in N_{e}}\left(\alpha_{k j}^{+}+\alpha_{k j}^{-}\right)
$$

s.t.

$$
\begin{aligned}
& (1 ; 0 ; \mathbf{0})^{T} Z(1 ; 0 ; \mathbf{0})=1 \\
& (0 ; 1 ; \mathbf{0})^{T} Z(0 ; 1 ; \mathbf{0})=1 \\
& (1 ; 1 ; \mathbf{0})^{T} Z(1 ; 1 ; \mathbf{0})=2 \\
& \left(a_{k} ; e_{j}\right)^{T} Z\left(a_{k} ; e_{j}\right)-\alpha_{k j}^{+}+\alpha_{k j}^{-}=\left(\hat{d}_{k j}\right)^{2}, \forall k, j \in N_{e} \\
& \alpha_{k j}^{+}, \alpha_{k j}^{-} \geq 0 \\
& Z \succeq 0
\end{aligned}
$$

